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Abstract
We show in this paper that a particular family of Askey–Wilson polynomials
can be interpreted directly in the light of q-deformed suq (2) algebras. This
approach allows us to correct previous results concerning the q-Legendre
functions investigated in Granovskii and Zhedanov (1993 J. Phys. A: Math.
Gen. 26 4331). We also establish the orthonormalization and the special cases
q → 1 (classical limit) and q → ∞ (asymptote). We conclude that these
q-Legendre functions differ significantly from their classical counterparts only
when q is in the vicinity of the unitary circle, where the singular points of the
absolute value of these q-functions undergo a series of bifurcations.

PACS numbers: 02.30.Gp, 02.20.Uw

1. Introduction

The properties of deformed algebras have been under intense investigation in the last two
decades, the main efforts being mainly directed to the general mathematical properties
and to applications in integrable systems in statistical mechanics and quantum field theory
[1–5]. The possibility of applications of the representation theory of the deformed algebras in
modelling physical problems is restricted by a limitative result pointing that the dimensions
of the deformed representations are the same as their classical counterparts if the deformation
parameter is not a root of unity. In practice, this means that no one expects a substantial
diversity of new results from the deformed irreducible representation for the modelling of
physical, chemical or biological systems. The main goal of this paper is to investigate the
properties of the deformed harmonic functions of the simplest deformed Lie algebra, suq(2),
having in mind possible physical applications and optimization procedures. In order to do this,
one needs explicit unitary orthogonality relations and to know the behaviour of the deformed
functions realizing the irreducible representations near the unitary circle, including the roots
of unity, since only in this case are new possibilities for applications expected.
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A few years ago, two different realizations of the quantum algebra suq(2) on a sphere were
introduced simultaneously by Rideau and Winternitz [6] and by Granovskii and Zhedanov [7].
Rideau and Winternitz constructed a basis for its irreducible representations in terms of the
so-called q-Vilenkin functions related to the little q-Jacobi [6]. Their work was completed by
Irac-Astaud and Quesne [8] where the orthonormality relations of the q-Vilenkin functions
were deduced. Recently, yet another realization quite similar to [6] was developed in [9],
where the scalar product involves deformed integration.

The realization used by Granovskii and Zhedanov [7] allowed them to construct
eigenfunctions to the integer irreducible representations only, which were called spherical
q-functions or q-Legendre functions. Employing their Askey–Wilson AW(3) algebraic
technique, they also showed that the q-Legendre functions are related to the Askey–Wilson
q-deformed polynomials [10] and presented a conjecture for the orthogonality relation (without
the normalization constant) satisfied by the q-Legendre functions for q ∈ R+, although this
last observation is not explicitly stated in [7].

In section 2, the classical Legendre functions and their relation with the classical su(2)
algebra is briefly presented. In section 3, the realization proposed in [7] is concisely reviewed.
The q-Legendre functions are re-derived in section 4 in order to fix some factors present
in [7] and show that these functions are naturally related to the Askey–Wilson q-deformed
polynomials, with no need for referring to the AW(3) algebra. The orthonormality relation is
discussed in section 5, and we obtain explicitly the normalization constant. In section 6 the
special cases q → ∞ (the asymptotic limit) and q → 1 (the classical limit) are considered
as well as numerical examples near the unitary circle. We believe these improvements are
important not only from the point of view of the q-functions themselves [11–13] but also from
that of applications in physics.

2. The classical su(2) algebra

The classical compact Lie algebra su(2) is defined by the following commutation relations:

[J+, J−] = 2Jz

[Jz, J±] = ±J±.
(1)

Each of its unitary irreducible representations is spanned by the 2j + 1 vectors |j,m〉 for
integer or semi-integers j , −j � m � j . Using the unitary conditions J

†
z = Jz and J

†
± = J∓,

the corresponding matrix elements are given by

J 2|j,m〉 = j (j + 1)|j,m〉 (2)

Jz|j,m〉 = m|j,m〉 (3)

J±|j,m〉 =
√

(j ∓ m)(j ± m + 1)|j,m ± 1〉 (4)

where J 2 is the Casimir operator:

J 2 = J 2
z + 1

2 (J+J− + J−J+). (5)

For integer j = l, the su(2) algebra can be realized by the spherical differential operators

Lz = −i
∂

∂φ
(6)

L± = e±iφ

(
i cot θ

∂

∂φ
± ∂

∂θ

)
(7)
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and the eigenvectors |l,m〉 become the spherical harmonics [14]

Yl,m(θ, φ) = 〈θ, φ|l,m〉 = (−1)m eimφ

[
(2l + 1)

4π

(l − m)!

(l + m)!

]1/2

Pl,m(x) (8)

where Pl,m(x), x = cos θ , are the associated Legendre functions which are orthogonal with
the weight function sin θ ,∫ π

0
dθ sin θPl,mPl′,m = δll′

2

2l + 1

(l + m)!

(l − m)!
(9)

and obey the Sturm–Liouville equation given by L2 and Lz:

1

sin θ

d

dθ

[
sin θ

d

dθ
Pl,m(x)

]
+

[
l(l + 1) − m2

sin2θ

]
Pl,m(x) = 0. (10)

3. The deformed suq(2) algebra

In the following, we use calligraphic letters for the q-deformed quantities such as the algebra
elements, spherical harmonics and Legendre functions. The q-deformed suq(2) is defined
by [3]

[Jz,J±] = ±J± (11)

[J+,J−] = [2Jz]q (12)

where our q-deformation is

[x]q = qx − q−x

q − q−1
= sinh ωx

sinh ω
q = eω. (13)

The classical su(2) algebra is recovered in the limit q → 1, which will be called the classical
limit. The irreducible representations for suq(2) can still be labelled by the same quantum
numbers |l,m〉 but with q-deformed matrix elements [3]:

J 2|l, m〉 = [l]q[l + 1]q |l, m〉 (14)

Jz|l,m〉 = m|l,m〉 (15)

J±|l,m〉 = √
[l ∓ m]q[l ± m + 1]q|l,m ± 1〉 (16)

where

J 2 = [Jz]2
q + 1

2 (J+J− + J−J+). (17)

When q ∈ R+, we can impose J †
z = Jz and J †

± = J∓, as required in physics [3], and the
matrix elements in (16) are invariant by q → q−1.

In this work, we are interested only in integer angular momentum j = l, in which case
we denote the generators {Lz,L±}. The q-spherical differential realization will be done by the
following shift operators [7]:

Lz = −i
∂

∂φ
(18)

L± = e±iφ

sinh ω

[
i cot θ cos

(
ω

∂

∂θ

)
sin

(
ω

∂

∂φ

)
± sin

(
ω

∂

∂θ

)
cos

(
ω

∂

∂φ

)]
. (19)
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These deformed operators have the classical operators (6) and (7) as their classical limit
(q → 1 or ω → 0). Equations (14) and (15)) can be written in this realization as

Dq[A(θ)DqYl,m(θ, φ)] +
(
[l]q[l + 1]q − B(θ)[m]2

q

)
Yl,m(θ, φ) = 0 (20)

where Dq is the q-deformed derivative [10, 15] in x = cos(θ),

DqF(θ) ≡ F(θ + iω) − F(θ − iω)

cos(θ + iω) − cos(θ − iω)
= F(θ + iω) − F(θ − iω)

−2i sinh ω sin θ
(21)

and

A(θ) = sin2θ + sinh2mω (22)

B(θ) = cosh ω

sin2θ + sinh2ω
+ 1 − cosh ω. (23)

Note that the classical limit of the q-deformed derivative Dq is

lim
q→0

Dq = − 1

sin θ

d

dθ
= d

dx
x = cos θ (24)

and therefore equation (10) is the classical limit of equation (20).

4. The q-deformed spherical harmonics

Following Granovskii and Zhedanov [7], instead of attempting to solve (20), we investigate the
action of L+ on the eigenfunctions Yl,m = 〈θ, φ|l,m〉 in order to find an explicit q-deformed
function for Yl,m. First, we assume the usual variable separation:

Yl,m(θ, φ) = eimφ�l,m(θ) m � 0. (25)

Using the representation given in (19), equation (16) can be written as

�l,m(θ + iω) sin(θ − imω) − �l,m(θ − iω) sin(θ + imω)

2i sinh ω sin θ
= √

[l − m]q[l + m + 1]q�l,m+1(θ).

(26)

We assume also the following functional form for �l,m(θ):

�l,m(θ) = Cl,mζm(θ)	l,m(θ) (27)

where Cl,m is a constant which we choose, for convenience, as

Cl,m = (−1)m

[2m]q!!

(
[2l + 1]q

4π

[l + m]q!

[l − m]q!

)1/2 l∏
k=m+1

cosh(kω) (28)

and the functions 	l,m(θ) and ζm(θ) are to be determined. The q-deformed factorial [k]q! and
the double factorial [k]q!! are defined as follows:

[k]q! = [k]q[k − 1]q · · · (29)

[k]q!! = [k]q[k − 2]q · · · (30)

The ζm(θ) function can be determined by taking l = m in (26) and imposing 	l,m(θ) to be a
polynomial of degree l − m in cos θ . The resulting equation,

ζm(θ + iω) sin(θ − imω) = ζm(θ − iω) sin(θ + imω) (31)
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is solved by

ζm(θ) = gm(θ)Fm(θ) (32)

where

Fm(θ) =
m−1∏
k=0

sin (θ + iω(m − 1 − 2k))

=




∏m/2
k=1(cosh2(2k − 1)ω − cos2θ) for m even

1 for m = 0

sin θ
∏(m−1)/2

k=1 (cosh2 2kω − cos2θ) for m odd

(33)

and gm(θ) is any function of θ with period 2iω besides the natural real period 2π . As we will
see, this double-periodic function is related to the Jacobi theta functions and plays the role of
a q-deformed weight function. Note that

F 2
m(θ) = 2−2m(q−2 e2i(θ+imω), q−2 e−2i(θ+imω); q−4)m (34)

where (a; q)k is the q-deformed Pochhammer symbol

(a; q)k =
{
(1 − a)(1 − aq) · · · (1 − aqk−1) if k = 1, 2, . . . ,

1 if k = 0
(35)

and

(a, b; q)k = (a; q)k(b; q)k. (36)

Setting the m dependence in gm(θ) as

gm(θ) = g(θ + imω). (37)

Equation (26) becomes

Dq	l,m(θ) = [l + m + 1]q[l − m]q
2[m + 1]q cosh2(m + 1)ω

	l,m+1(θ). (38)

The solution to this equation is the following basic q-hypergeometric polynomial (A complete
proof is presented in appendix A.):

	l,m(θ |q) = 4ϕ3

(
a1, a2, a3, a4

b1, b2, b3
; q−2, q−2

)
=

l−m∑
k=0

∏4
s=1(as; q−2)k∏3
r=1(br; q−2)k

q−2k

(q−2; q−2)k
(39)

with

a1 = q2(l−m) a2 = q−2(l+m+1) a3 = eiθ q−(m+1)

a4 = e−iθ q−(m+1) b1 = −b2 = −b3 = q−2(m+1).
(40)

Note that 	l,m is invariant under q → q−1 and has only even or odd powers of cos θ [10].
These polynomials are related to the Askey–Wilson [10] q-deformed polynomials pn(x|q):

pn(x; a, b, c, d|q−2) = �l,m	l,m(x|q) (41)

a = b = −c = −d = q−(m+1) n = l − m x = cos θ (42)

�l,m = q(l−m)(m+1)(q−2(m+1); q−2)l−m(−q−2(m+1); q−2)2
l−m. (43)

For m = 0, the 	l,m(x|q) polynomials, up to a constant factor, are the special case α = β = 0
of the q-Jacobi polynomials [10, equation (4.17)] defined by Rahman [16] with q → q−2.
See also [13, 17–20, 12] for another interpretation of these polynomials as q-deformed
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spherical functions. Since the Askey–Wilson polynomials pn(x|q) satisfy a general three
term recurrence relation,

2xpn(x) = Anpn+1(x) + Bnpn(x) + Cnpn−1(x) p−1 = 0 p0 = 1 (44)

there is a corresponding relation for 	l,m involving different l and the same m. For the present
case, the coefficients An,Bn and Cn are

An = q3l−m+2

2 sinh ω

[l + m + 1]q
[2l + 1]q[2l + 2]q

Bn = 0

Cn = 8q−3l+m+1 cosh2lω sinh ω
[l − m]q[2l]q

[2l + 1]q

(45)

and therefore equation (44) becomes

cos θ	l,m = cosh(l + 1)ω
[l + m + 1]q

[2l + 1]q
	l+1,m + cosh lω

[l − m]q
[2l + 1]q

	l−1,m. (46)

Gathering all information obtained so far, the q-spherical harmonics (25) can be written
as

Yl,m(θ, φ) = (−1)m eimφ

(
[2l + 1]q

4π

[l − m]q!

[l + m]q!

)1/2

Pl,m(θ) (47)

with

Pl,m(θ) = ϒl,mFm(θ)gm(θ)	l,m(cos θ) (48)

and

ϒl,m = 1

[2m]q!!

[l + m]q!

[l − m]q!

l∏
k=m+1

cosh kω. (49)

Therefore, replacing 	l,m by Pl,m in (46) and setting x = cos θ , we have

[2l + 1]qxPl,m(x) = [l − m + 1]qPl+1,m(x) + cosh2lω[l + m]qPl−1,m(x). (50)

It is shown in section 6 that the classical associated Legendre functions Pl,m are the classical
limit (q → 1) of Pl,m, which will be called q-deformed associated Legendre functions.

5. The orthogonality relation

An orthogonality relation for the q-deformed associated Legendre functions can be obtained
directly from the properties of the Askey–Wilson polynomials. Two cases must be considered:
q ∈ R and q ∈ C. In the real case, unitary representations can be defined as usual [3]. For
the complex case, there are limitations to unitarize the irreducible representations even in the
unitary circle [8] as will be seen.

For Re q > 1 we have [10, p 14, theorem 2.5]
1

2π

∫ π

0
dθ w(θ)pl−m(θ |q−2)pl′−m(θ |q−2) = δl,l′hl,m (51)

since there are no point masses such that |q−(m+1)q−2k| > 1, k � 0, once relation (41) is taken
into account. The weight function w(θ) for the present case is given by

w(θ) = (e2iθ , e−2iθ ; q−2)∞
(q−(m+1) eiθ , q−(m+1) e−iθ ; q−2)2∞(−q−(m+1) eiθ ,−q−(m+1) e−iθ ; q−2)2∞

= 22m+1

qm2− 1
2

sin θF 2
m(θ)

ϑ1(θ + imω|q−2)

ϑ4(θ + imω|q−2)
(52)
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where we have used (34) and ϑk are the Jacobi theta functions [21]:

ϑ1(z|q) = 2q1/4 sin z(q2, q2 e2iz, q2 e−2iz; q2)∞ (53)

ϑ2(z|q) = 2q1/4 cos z(q2,−q2 e2iz,−q2 e−2iz; q2)∞ (54)

ϑ3(z|q) = (q2,−q e2iz,−q e−2iz; q2)∞ (55)

ϑ4(z|q) = (q2, q e2iz, q e−2iz; q2)∞. (56)

The normalization constant in (51) is given by

hl,m = (q−4(l+1); q−2)∞(q−2(l+m+1); q−2)l−m

(−q−2(l+1); q−2)4∞(q−2(l+1); q−2)2∞(q−2(l−m+1); q−2)∞

= 2q2l+ 1
2

π

(q−4; q−4)2
l (−q−2; q−2)2

l

(q−2(l−m+1); q−2)2m

M(ω) (57)

where

M(ω) = π

sinh ωϑ2
2 (0| e−ω)

. (58)

We impose the usual relation∫ π

0
dθ sin θPl,mPl′,m = δl,l′Nl,m (59)

(note that there is no complex conjugation) with

Nl,m = 2πhl,m

qm2− 1
2

22m+1

(
ϒl,m

�l,m

)2

= 2

[2l + 1]q

[l + m]q!

[l − m]q!
M(ω)

l∏
r=1

cosh2rω (60)

in order to obtain the gm function. The final result is

g2
m(θ |ω) = ϑ1(θ + imω|e−2ω)

ϑ4(θ + imω|e−2ω)
=

{√
κsn (2Kθ/π |κ) for m even

[
√

κsn(2Kθ/π |κ)]−1 for m odd
(61)

where sn is the elliptic sine, and κ is the elliptic modulus and K = K(κ) is the complete
elliptic integral of the first kind [21]:

κ = ϑ2
2 (0|e−2ω)

ϑ2
3 (0|e−2ω)

K(κ) = π

2
ϑ2

3 (0|e−2ω). (62)

It is important to note that the scalar product (59) works for q ∈ C as well as for q ∈ R,
but only in the latter case can the irreducible representations of suq (2) be made unitary [3].
Note also that no exotic q-deformed integration is present in (59).

As a final remark, note that the presence of the elliptic sine in (61) brings about many
unique features to these q-functions. For example, for real deformations when ω → 0, gm(θ |ω)

converges weakly to unity, but the endpoints gm(0|ω) and gm(π |ω) are always zero for m even
(see figure 1). This property makes the present q-Legendre functions quite different from the
q-Vilenkin [8] and the classical Legendre functions in the vicinity of θ = 0 and θ = π , as
shown in figure 6 (see section 6.3 for further discussions).

6. Special cases

6.1. q → 1

The special case q → 1, or equivalently ω → 0, corresponds to the classical limit, since the
commutation relations (12) reduce to their classical counterparts given in (1). In this section,
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Figure 1. Absolute value of the weight function gm(θ |ω) given in (61), m even, q = exp(ω), far
away from the unitary circle (|q| = 1). For real ω, g2

m = 1 is the upper bound when ω → 0.

it is shown that the q-deformed Legendre functions (48) reduce to the classical Legendre
functions when q → 1.

First, we calculate the classical limit of the q-hypergeometric polynomial 	l,m. The
deformed Pochhammer symbols appearing in (39) can also be written as

(±q−2α; q−2)k = q−kαq−k(k−1)/2
k−1∏
r=0

(qα+r ∓ q−(α+r)) (63)

where α ∈ {−(l − m), l + m + 1,m + 1, 1} and

(q−a eiθ , q−a e−iθ ; q−2)k = 2kq−akq−k(k−1)

k−1∏
r=0

{cosh(a + 2r)ω − cos θ} (64)

which are more suitable for taking the limit. Substituting these last expressions back in (39)
and using the deformation given in (13), we have

	l,m(θ) =
l−m−1∑

k=0

(−2)−k

k−1∏
r=0

[l − m − r]q[l + m + 1 + r]q
[m + 1 + r]q[r + 1]q

(cosh(m + 1 + 2r)ω − cos θ)

cosh2(m + 1 + r)ω
.

(65)

Now we can see immediately that the classical limit for 	l,m is a hypergeometric series:

lim
q→1

	l,m(θ) =
l−m−1∑

k=0

(−1)k
(1 − cos θ)k

2k

k−1∏
r=0

(l − m − r)(l + m + 1 + r)

(m + 1 + r)(r + 1)

= 2F1

(−(l − m), l + m + 1
m + 1

; 1 − cos θ

2

)
. (66)

Second, we calculate the classical limit of gm defined in (61). Since κ → 1 and
K(κ) → ∞ when ω → 0,

lim
ω→0

√
κ sn(2Kθ/π |κ) = 1. (67)

It is now easy to see that

lim
q→1

Pl,m(θ) = 1

2mm!

(l + m)!

(l − m)!
sinmθ2F1

(−(l − m), l + m + 1;
m + 1

1 − cos θ

2

)
= Pl,m(θ) (68)
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and that the classical limit of (50) is the well-known classical recurrence relation [14] for Pl,m:

(2l + 1)xPl,m(x) = (l − m + 1)Pl+1,m(x) + (l + m)Pl−1,m(x). (69)

Since M(ω) → 1 when ω → 0, the normalization constant (60) also has the appropriate
classical limit.

6.2. q → ∞
The asymptotic expansion q → ∞ is another important special case. The following basic
results follow directly from the definitions of the respective quantities:

[x]q → qx−1 [x]q! → qx(x−1)/2 [x]q!! → qx2
x > 0 (70)

cosh xω → 1
2qx sinh xω → 1

2qx x � 0 (±qα; qβ)n → 1 α < 0 β < 0.

(71)

Thus, it is easy to see that

Fm(θ) →
{

2−mqm2/2 for m even

21−mq(m2−1)/2 sin θ for m odd
(72)

and

gm(θ) →
{
(
√

q)−12 sin θ for m even√
q(2 sin θ)−1 for m odd.

(73)

Therefore, the weight function (52) and the normalization constant (59) have very simple
asymptotes:

w(θ) → 4 sin2θ Nl,m → π2−2lql(l−1)+m(2l−1)−1/2. (74)

Now, a normalized asymptotic expansion to the q-deformed Legendre functions (48) can
be written as √

Nl,m Pl,m

q→∞→
√

2 sin θ

π
p̃l−m(θ) (75)

where p̃l−m(θ) is the asymptotic expansion of the Askey–Wilson polynomials [10, p 27],
given by

p̃n(θ) = Un(θ) − 2q−2(m+1)Un−2(θ) + q−4(m+1)Un−4(θ)
q→∞−−−→Un(θ) (76)

with

p̃2(θ) = U2(θ) − 2q−2(m+1) − q−4(m+1) q→∞−−−→U2(θ)

p̃1(θ) = (1 − q−4(m+1))U1(θ)
q→∞−−−→ U1(θ)

p̃0(θ) = 1

(77)

and the Chebyshev polynomials of the second kind

Un(θ) = sin(n + 1)θ

sin θ
. (78)

Finally, the normalized asymptotic q-deformed Legendre functions reduce to the Fourier basis
with a weight function sin θ :

Al,m(θ) = lim
q→∞

√
Nl,m Pl,m =

√
2

π

sin(l − m + 1)θ√
sin θ

. (79)
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6.3. Near the unitary circle

For complex values of the deformation parameter

q = exp(ω) ω = ωR + iωI ωR, ωI ∈ R (80)

the function gm(θ |ω) given in equation (61) can present very rich structures, especially as
q approaches the unitary circle S1 (ωR = 0), in contrast with the case of real q, when no
significant deviations from the classical case appear. As a consequence, the q-Legendre
functions can lose all similarity with their classical analogues as q → S1. In the following,
we present several numerical examples of this phenomenon. As we will see, the qualitative
topographic properties of the q-functions are changed with the control parameter ωR in a
typical morsification process with non-Morse critical points of type A2 [22].

The q-deformed Legendre and Vilenkin functions are implemented in symbolic computer
codes as well as the basic tools for deformation and the numerical examples presented in this
section [23].

6.3.1. The weight function gm. The absolute value |gm(θ |ω)|2,m even, is shown in figure 1
for three different real values of the deformation parameter ω, and one complex value far
from the unitary circle. As we can see, there is no topographic difference among these four
functions: each one has one maximum. It is also interesting to see that the classical limit
g0 = 1 is attained in a non-trivial manner near the endpoints as shown by the long-dashed
curve (ω = 1/4) in figure 1.

For complex deformations near the unitary circle, ωI 
= 0, ωR → 0, new maxima and
minima of |gm(θ |ω)|2 are unfolded, as shown in figure 2 for m even. This unfolding is
controlled by the deformation parameter ω. In figure 2(a), we have a global view (0 � θ � π)

of this behaviour for three values of the deformation parameter. We can see two new
maxima when we move from ω = 1 + i to ω = 1/5 + i. Moving a little closer, from
ω = 1/5 + i to ω = 1/50 + i, we will find 11 new maxima. As we keep approaching the
unitary circle, a proliferation of such critical points takes place, and a typical situation is
presented for ω = 10−5 + i (see figure 2(b), the local view). This phenomenon is typical of an
unfolding of singular points (maxima, minima and saddle points) as shown in figures 3 and 4
(the corresponding intensities). Note that this unfolding process has a fractal-like nature,
occurring in ever finer scales as the deformation parameter moves towards the unitary
circle.

All positions of the singular points in figure 3 can be inferred from (61). For m = 0
(m even), we have

g2
0(θ |ωR + iωI ) = 2 sin θ e−ω/2

∞∏
k=0

× {1 − e−4ωR(k+1) e2i[θ−2ωI (k+1)]}
{1 − e−2ωR(2k+1) e2i[θ−ωI (2k+1)]}

{1 − e−4ωR(k+1) e−2i[θ+2ωI (k+1)]}
{1 − e−2ωR(2k+1) e−2i[θ+ωI (2k+1)]} . (81)

From this expression, we can see the maxima (poles) at θ = ±rπ ± sωI , with r and s
integers and s odd (the plus and minus signs can be taken independently). The minima (zeros)
correspond to even values of s. Some of these maxima are labelled in figure 5, with their (r, s)

integers given in table 1. In the limit case ωR → 0, corresponding to q ∈ S1, (81) has an
infinite number of zeros and poles. Figures 2 and 3 show this behaviour for m even. Similar
analyses are made in the next section for other q-deformed functions.

It is remarkable that the function |gm(θ |0.01 + i)|2, for example, can be reproduced quite
accurately by a superposition of Gaussians,
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(a) Global behaviour (0 ≤ θ≤π).
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|g0|2 ω = 1/5 + i
ω = 1/50 + i
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(b) Local behaviour (0 ≤ θ≤π/).

θ

θ

Figure 2. (a) Behaviour of |gm(θ |ω)|2,m even, when the deformation parameter q = exp(ω), ω =
ωR + iωI , is near the unitary circle (ωR�1). Its corresponding bifurcation diagram is shown in
figure 3. (b) Same as before, but with θ < π/8 in order to show the unfolding of the singular
points for smaller ωR in a slow process.

Table 1. Non-optimized parameters of the Gaussian (82). All maxima in figure 5 are labelled by
the integers in the second row.

k 1 2 3 4 5 6 7 8 9 10 11

(r, s) (1, −3) (3, −9) (−2, 7) (0, 1) (2, −5) (−3, 11) (−1, 5) (1, −1) (3, −7) (−2, 9) (0, 3)
αk 150 50 100 300 100 50 100 300 100 50 150

11∑
k=1

Ak exp(−αk(θ − θk)
2) θk = rπ + s Ak = |gm(θk|0.01 + i)|2 (82)

as shown in figure 5, with the non-optimized values given in table 1. All maxima shown in
figure 5 are labelled by the integers (r, s) given in the second row of table 1. Expression
(82), which is typically used in atomic physics as Gaussian orbitals, can be naively interpreted
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Figure 3. Bifurcation diagram for the singular points of |gm(θ |ω)|2, given in equation (61), for m
even, near the unitary circle (q = exp(ω), ω = ωR + i). The intensities are shown in figure 4.
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Figure 5. Gaussian approximation of |gm(θ |0.01 + i)|2 near the unitary circle. The Gaussian
function (dashed lines) is given in (82). All 11 maxima are given in table 1.
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Table 2. Un-normalized q-functions Plm(x|q) (see equations (48) and (61)) up to l = 3 where
x = cos θ and g

1/2
m = √

gm(θ |q). Their normalization constants Nlm and asymptotes Alm(x|q)

are shown in table 3.

l m Plm

0 0 g
1/2
0

1 0 g
1/2
0 x

1 1 g
1/2
1

√
1 − x2

2 0 1
4 g

1/2
0 [4(q4 + q2 + 1)x2 − (q2 + 1)2]q−1(q2 + 1)−1

2 1 g
1/2
1 x

√
1 − x2q−2(q4 + q2 + 1)

2 2 − 1
4 g

1/2
2 [4q2x2 − (q2 + 1)2]q−4(q4 + q2 + 1)

3 0 1
4 g

1/2
0 x[4(q8 + q6 + q4 + q2 + 1)x2 − (2q8 + 3q6 + 2q4 + 3q2 + 2)]q−3(q2 + 1)−1

3 1 1
4 g

1/2
1

√
1 − x2[4(q8 + q6 + q4 + q2 + 1)x2 − (q4 + 1)2]q−5(q2 + 1)−1(q4 + q2 + 1)

3 2 − 1
4 g

1/2
2 x[4q2x2 − (q2 + 1)2]q−8(q4 + q2 + 1)(q8 + q6 + q4 + q2 + 1)

3 3 − 1
4 g

1/2
3

√
1 − x2[4q2x2 − (q4 + 1)2]q−10(q4 + q2 + 1)(q8 + q6 + q4 + q2 + 1)

Table 3. The normalization constants Nlm , equation (60), and asymptotes Alm(x|q), equation (79),
up to l = 3 for the q-functions Plm(x|q) shown in table 2, where Cl = M(q)

∏l
r=1(q

2r + 1)2

(
∑2l

s=0 q2s)−1,M(q) is the function given in (58) and B(x) =
√

2
π

(1 − x2)1/4, x = cos θ .

l m Nlm Alm

0 0 2C0 1
1 0 2C1 2x

1 1 2C1q
−1(q2 + 1) 1

2 0 8C2q
−2 (4x2 − 1)

2 1 8C2q
−5 ∏2

j=1

(∑j

k=0 q2k
)

2x

2 2 8C2q
−8 ∏3

j=1

(∑j
k=0 q2k

)
1

3 0 32C3q
−6 4x(2x2 − 1)

3 1 32C3q
−11 ∏3

j=2

(∑j
k=0 q2k

)
(4x2 − 1)

3 2 32C3q
−16 ∏4

j=1

(∑j

k=0 q2k
)

2x

3 3 32C3q
−21 ∏5

j=1

(∑j

k=0 q2k
)

1

as an approximation to the probability density of a particle trapped in a chain of harmonic
potentials.

6.3.2. The q-Legendre functions. In tables 2 and 3 we present a complete list with all q-
Legendre functionsPlm (see equations (48) and (61), up to l = 3. The q-Vilenkin functions [8]
Vlm for l = 3 are given in table 4. Both Plm and Vlm functions are shown in figure 6, for l = 3
and q ∈ R. There are two main differences between these two classes of orthogonal q-functions
for real q. First, unlike the q-Vilenkin functions, the q-Legendre functions have a definite
parity in θ = π/2. Second, their behaviour as q → ∞ are completely different: thePlm have a
well defined limit (as discussed in section 6.2), while the Vlm diverge. It must be remarked that
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Figure 6. A comparison among the classical Legendre functions and their two q-deformed versions
for q ∈ R: the q-Vilenkin functions [8] Vlm(θ |ω) and Plm(θ |ω) given in (48), where q = exp(ω).

Table 4. Normalized q-Vilenkin functions [8] Vlm(x|q) for l = 3, q ∈ R and x = cos θ .
Their normalization constant for l = 3 is N3 = (4q7 ln q)(q14 − 1)−1, independently of m, and
F(x) = [(1 − x)q6 + (1 + x)][(1 − x)q4 + (1 + x)][(1 − x)q2 + (1 + x)].

l m Vlm

3 0 2q8[(q8 + 2q6 + 4q4 + 2q2 + 1)x3 − (q8 + 2q6 + 2q2 + 1)x]/F(x)

3 1 q15/2
[∏3

j=2

(∑j
k=0 q2k

)]1/2 √
1 − x2[(q4 + 3q2 + 1)x2 − (q4 − q2 + 1)]/F(x)

3 2 2q8(q2 + 1)−1/2
[∏4

j=2

(∑j

k=0 q2k
)]1/2

(1 − x2)x/F(x)

3 3 [(q4 + q2 + 1)(q2 + 1)]−1/2
[∏5

j=2

(∑j

k=0 q2k
)]1/2

(1 − x2)3/2/F(x)

while the q-Legendre functions are not defined on the unitary circle, the q-Vilenkin functions
are well defined there [8]. Note also in figure 6(a) that P30 tends to its classical limit as
q → 1 in a non-trivial way (singular at the endpoints θ = 0 and θ = π) much like g0 does in
figure 1.
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Figure 7. Bifurcation sets of |Plm(θ |ωR + i)|2, where θ is the vertical axis. The solid lines are the
maxima and the dashed lines are the minima.

Following the lines of the discussion presented in the last section, we show in figures 7
and 8 the position of all maxima and minima of |Plm(θ |q)|2, l � 3, q = exp(ωR + i), as a
function of the deformation parameter ωR → 0. We can see in all cases that the qualitative
topographic properties of these q-functions are changed as the control parameter ωR is changed
in a typical morsification process with non-Morse critical points of type A2. In each figure,
the vertical axis is the angular position θ and the solid (dashed) lines represent maxima
(minima). Observe in these figures that the pitchfork bifurcations occur only in |P00|2, |P11|2,
|P20|2, |P31|2 and |P33|2, at least in region 1–0.001 shown for ωR . We observe again the
fractal-like nature of this process for smaller values of the deformation parameter ωR and that
|Plm(θ |q)|2 must have an infinite number of singular points when ωR = 0. The bifurcation
diagram 8(b) shows a pitchfork in reverse order from all other cases. In this same diagram the
minimum peaks undergo another pitchfork bifurcation in the region 0.001–0.0001, but this
time in phase with all others.
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Figure 8. Continuation of the bifurcation sets of |Plm(θ |ωR + i)|2, where θ is the vertical axis.
The solid lines are the maxima and the dashed lines are the minima.

7. Conclusions

We showed in this paper that a particular family of Askey–Wilson polynomials can be
interpreted directly in the light of the q-deformed algebra suq (2). We also corrected and
proved previous results concerning the q-Legendre functions such as their orthonormalization.
The special cases q → 1 (classical limit) and q → ∞ (asymptote) were established properly.

In order to appraise the potentiality of q-deformed special functions in applications such
as optimization procedures, we investigated numerically the properties of some q-Legendre
functions for different values of the deformation parameter q. We conclude that the most
interesting situation is when the deformation parameter approaches S1. In that case these
q-functions can exhibit a complex structure, where their singular points undergo a series of
fractal-like bifurcations, qualitatively different from their classical limits.

Further investigation concerning different routes to S1, with special attention to roots of
unity, is underway for both q-Legendre and q-Vilenkin functions.
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Appendix. The first order q-differential equation for Φl,m

We present here a direct verification that the basic hypergeometric (39) is the solution of the
first order q-differential equation (38). Since the θ dependence on 	l,m(θ) given in (39) comes
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only from the product (q−(m+1) eiθ , q−(m+1) e−iθ ; q−2)k, we need to evaluate this term in θ ± iω
in order to calculate its q-derivative Dq as defined in (21):

Dq(q
−(m+1) eiθ , q−(m+1) e−iθ ; q−2)k = −2q−(m+k)[k]q(q−(m+2) eiθ , q−(m+2) e−iθ ; q−2)k−1.

(83)

Therefore, the left-hand side of (38) is

Dq	l,m(θ) = − 2

qm

l−m∑
k=1

(q2(l−m), q−2(l+m+1); q−2)k(q
−(m+2) eiθ , q−(m+2) e−iθ ; q−2)k−1

(q−2(m+1),−q−2(m+1),−q−2(m+1), q−2; q−2)k

[k]q
q3k

.

(84)

If we write all θ -independent Pochhammer symbols as

(a, b, . . . ; q)k = (1 − qk−1a)(1 − qk−1b) · · · (a, b, . . . ; q)k−1 (85)

and change the sum index (k → k − 1), we have

Dq	l,m(θ) = 1

2

l−m∑
k=0

{
(q2(l−m), q−2(l+m+1); q−2)k(q

−(m+2) eiθ , q−(m+2) e−iθ , q−2)k

(q−2(m+1),−q−2(m+1),−q−2(m+1), q−2; q−2)k
q−k

× [l − m − k]q[l + m + k + 1]q
cosh2[(m + k + 1)ω][m + k + 1]q

}
. (86)

As a final step, using the following properties of Pochhammer symbols

(s1q
s22ζ ; q−2)k(q

2(ζ−s2k) − s1q
−2(ζ−s2k)) = (s1q

s22(ζ−s21); q−2)k(q
ζ − s1q

−ζ )

s1 = ± s2 = ± (87)

in (86), we find the right-hand side of (38). Note the presence of cosh(m + k + 1)ω in (86),
which is the motivation of our

∏l
k=m+1 cosh(kω) coefficient in (28). It must be remarked that

this coefficient is missing in equation (4.6) of [7]. Consequently, they are not using the same
Ql,m function in their vertical and horizontal recurrence relations.
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